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For this problem, the domain was discretized by using 51
equally spaced grid points in the streamwise direction (x direction)
and 125 nonequally spaced grid points in the direction normal to
the plate (y direction). In the y direction, grid points were clus-
tered towards the plate (where y = 0), and grid spacings varied
from 6 X 107" m at y = 0 (corresponding to y* = puy/uu = 0.2) to
0.025 m aty = 0.25 m which resulted in 11 grid points in the linear
sublayer (0 < y*< 3), 24 grid points in the buffer layer (3 < y*<40),
and 75 grid point in the fully turbulent region.

" The equations used to model the turbulent boundary-layer flow
are the ensemble-averaged conservation equations of mass,
momentum (thin-layer Navier-Stokes), and total energy valid for a
calorically and thermally perfect gas. The ensemble-averaged con-
servation equations were closed by the k- model of Chen and
Patel which was described in the previous section. In this study,
the turbulence model lagged behind the conservation equations of
mass, momentum, and total energy by one timestep in the solution
procedure. Solutions to the conservation equations were obtained
by using the F3D code developed by Steger et al.!? Solutions to the
turbulence model were obtained by using the algorithm described
in the previous section; the code which embodies this algorithm
will be referred to as RAAKE.

Solutions were first obtained to examine the robustness of the
algorithm developed by running RAAKE with the diffusion terms
treated explicitly and then implicitly. When the diffusion terms
were treated explicitly, numerical experiments indicated that for
the current test problem stable numerical solutions can only be
obtained if the time-step size is less than about 1 X 107% s which is
comparable to the maximum timestep size permitted by the
explicit stability criterion from linearized analysis (i.e., aA/Ay* <
172, o = (u + p/o)/p; see Eq. (7) and set a = 0 because convection
is negligible in that direction and set b = aA#fAy?). When the diffu-
sion terms were treated implicitly, numerical experiments indi-
cated that stable numerical solutions can be obtained with a time-
step size as large as 1 X 10™* s which is also the largest timestep
size that can be used by the F3D code for the test problem.

With the robustness of the algorithm established, solutions were
obtained to assess its accuracy. This was achieved by using the
F3D code with RAAKE in which the diffusion terms were treated
implicitly. The time-step size used was 1X 1077 s, Solutions were
obtained for k" = k/(u)%, € = ,, e/p,, U}, and u* = ufu, as a func-
tion of y* = pu,y/u, where u, =+7,p,, is the friction velocity, and the
subscript w denotes y = 0. The solutions obtained for k* and € are
shown in Fig. 1, and they compare well with the known behavior

of these quantities'! (i.e., they fall within the band of available
experimental data). The solution obtained for u* as a function of y*
is not shown, but is in excellent agreement (less than 0.05% differ-
ence) with the ‘solution obtained by using:the Baldwin-Lomax
model'? which is known to provide the correct solution for the cur-
rent test problem.
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Fig. 1 Solution obtained for k* and €* as a function of y*.

These numerical experiments indicate that the method presented
in this study for treating diffusion terms implicitly for the LU algo-
rithm is useful in improving robustness for problems where diffu-
sion terms play an important role.
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Eigenvalue Sensitivity with Respect to
Location of Internal Stiffness and
- Mass Attachments
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Introduction

N recent years, sensitivity analysis has attracted great attention

in the research community.!™ Both static responses and eigen-
value sensitivity with respect to size and shape design variables
have been treated. Eigenvalue sensitivity considering shape vari-
ables is less developed. Recently, eigenvalue sensitivity for sup-
port locations have been reported.>® Specifically, Hon - and
Chuang® applied 2 material derivative concept in continuum
mechanics to derive eigenvalue sensitivity with respect to beam
support locations. This result shows that the eigenvalue sensitivity
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is related to the slope of the corresponding mode shape of the
beam at the support and the support reaction. Over a decade ear-
lier, Rozvany and Mroz® observed that the optimum hinge location
for a column is where the reaction vanishes. Even though eigen-
value (for buckling for this case) sensitivity was not mentioned
explicitly, their conclusion agrees with the sensitivity formula pre-
sented by Hon and Chuang. _

In this Note, formulas for eigenvalue sensitivity with respect to
location of discrete in-span occurrence for structure members are
derived using a normal mode method. The structural members
treated in this Note include bars and plates and in-span occur-
rences which include concentrated mass and inertia, rigid supports,
elastic supports, and appended spring-mass systems. Using the
approach described in the next section, closed-form formulas are
derived based on the classical normal mode method. It turns out
that the results are all of the same form with different interpreta-
tions of the terms for specific cases.

General Approaches and Main Results

The sensitivity of eigenvalue with respect to support location
has been derived using the concept of material derivatives.’ In this
Note, we choose a different approach. First, we use basic princi-
ples of structural mechanics and normal method to derive charac-
teristics equations which include the location of an in-span occur-
rence as a parameter. Taking the derivative of this equation with
respect to the in-span location yields, after some manipulations,
the following general equation for computing the rth eigenvalue
with respect to the in-span locations.

oA, 20F, .
9z - M, ()

where
0= 9,(2) @

Here, ¢, is the rth eigenfunction, M, the generalized mass of mode
r, z the location of in-span occurrence, and F, a characteristic force
which depends on the specific occurrence. Table 1 summarizes F,
for various occurrences. Detailed derivation of Eq. (1) is given in
the next section.

Derivation of the General Results

Consider the system shown in Fig. la which hereafter will be
referred to as system A: System A can be considered as system B
of Fig. 1b with a discrete in-span occurrence at z. By treating the
occurrence as an external load, the response of system A can be
computed using the eigensolutions of system B by classical normal
mode method. The free vibration of system A can be considered as
system B with a sinusoidal force F, ¢*¥ applied at the location of
in-span occurrence. The response of system B is

wlx, 1) = W(x)eim 3

Table 1 Interpretation of F, for various types of conditions

Occurrence Equation for F, Interpretation
Rigid support N/A Modal reaction force
Elastic support
Linear ~k §(2) Spring force (positive
‘ when spring in
cormpression)
Rotational —kg 0, (2) Spring torque
Concentrated
Mass m ¢ (A, Inertia force
Inertia Jo, (2)A, Inertia torque
Appended spring-mass —k[0,—$,(2)] Force in spring (positive
system for compression)
¢,,, = mode shape
coefficient of the

appended mass
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Fig. 1b System B: discrete occtirrence removed.
where
° W0V, () F
W(x) = 2 %_“ )
®; —-Q

i=1

and v, (x) , 0)? are the ith eigenfunction and the eigenvalue of sys-
tem B. For a specific in-span occurrence, a frequency equation can
be derived using the compatibility conditions between system B
and the in-span occurrence. The solution €; of this equation are the
eigenvalues of system A.

Let us consider the case of an in-span support at z. In this case,
the compatibility condition is

W(z)=0 &)
which leads to the following frequency equation
v (2)

Y =0 (6)

2 62
=10~

oo

Once an eigenvalue Qf is computed from Eq. (6), the cotrespond-
ing mode shape can be calculated by Eq. (4). Specifically, the rth
mode of system A is

oo

VAN ACTS
0,(x) = Yy ———— )

72
i1 0=

The eigenvalue sensitivity (893/ 0z) can be derived by taking
the derivative of Eq. (6) with respect to z. This leads to

0Q? AT = () F
- v, (2) \I’,ZF/ v (D) F, ®

oz -9 D -’

i=1 [

Now it remains to express Eq. (8) in terms of the eigensolution of
system A. From Eq. (7)

aat = i} [@%)‘V @F, / (@ - 93)] ©




AIAA JOURNAL, VOL. 31, NO. 41 TECHNICAL NOTES 793

or
a9, = V(D) ¥, (D)F,
(10)
ax x=2z i§1 Cl) Q
where
. v, (z)
v, (2) = — an
0z

The generalized mass of the rth mode of system A is
4
M, = j 07 (x) dx (12)
0

By using the definition of ¢,(x) of Eq. (7) and the orthonormal
propeity of the eigenfunctions wy(x), the integration of Eq. (12)
leads to

Vi (2)
M=% —F (13)
(0} - QD)
Using Egs. (10) and (13), Eq. (8) yields the general results

a0  —290.(2)F,

oz M, (14
where
. 99,
$,.(2) = _Z_); .
Examples

Two numerical examples are included in this section to demon-
strate the use of Eq. (1) for eigenvalue sensitivity analysis.

Example 1: Rod with Discrete Mass and Spring Support

Consider a uniform rod of length 100 in. with cross-sectional
area of 10 in.%. A concentrated mass of 0.1 Ib-s%/in. and a spring

100” -

80" >

40” J

SNAMNANANNY

A=10in2,E =107 psi,
lb-sec2

é k
Fig.2 Rod with in-span mass and spring: A = 10 in2, E =107 psi, p =
(0.1/386.. 4) (ib-s%/in. 4), m =0.1Ib/s%in., and k = 10 lb/m

p =(0.1/386.4)
m=0.1 lb-secz/m. , k=106Ib/in.
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EL=25x106lin2 , p=(0.1/3864)" b”sec k
m=0.11b-sec?/in. , k=1041b/in.

Fig. 3 Beam with i in-span occurrences: EI = 2.5 X 10° lb-m , 0 =(0.1/
386.4) (Ib-s¥in.%), m = 0.1 Ib/s/in., and k = 10° Ib/in.

Table 2 Eigenvalue sensitivity with respect to location of mass
or spring for axial vibration

Sensitivity formula

Forward Central
Case OFD? difference® difference®
Mass location, ~106,640 —53,960 —105,970
Az =0.01
Spring location, 9,537 35,289 9,540
Az = 0.001

20verall finite difference, see Bq. (17). °For computing ¢, in Eq. (1).

Table 3 Eigenvalue sensitivity for beam with
in-span occurrences

Sensitivity formula,

Case OFD, (rad/s)%/in. (rad/s)?/in.
Mass location 246.5 246.5
Support location ~1733.4 —1734.4
Spring location 17,660 17,660

with stiffness 10° Ib/in. are located at 40 in. and 80 in. from the
fixed end, respectively; see Fig. 2. The equations for eigensolution
sensitivity can be obtained from Table 1. They are for discrete
mass:
dA, ,
z

for discrete spring:

A, ,
= 2ko, (40) ¢, (40) (16)
z

Note that in Egs. (15) and (16), the mode shape is assumed to be
normalized to unit modal mass. The eigensolutions are obtained by
finite element method (FEM) by dividing the system uniformly
into 10 elements. Since for axial vibration via FEM the derivative
of eigensolution at a grid point is not available, the term ¢, (40) in
Eq. (16) needs to be evaluated by finite difference. Both forward
and central difference methods were used and the resuits are sum-
marized in Table 2. Also shown in Table 2 is eigenvalue sensitivity
evaluated by overall central finite difference (OFD) or

M, 4, (Az) =R, (-A2)

2z 2Az

It should be noted that the use of central difference to approximate
¢ (40) yields good sensitivity data as compared with the results
of OFD, whereas <])1 (40) approximated by forward difference
yields poor results.

an

Example 2: Beam with Discrete Mass, Spring, and In-Span Support

For the beam shown in Fig. 3, it is desired to find the sensitivity
with respect to location of the in-span occurrences. From Egq. (1)
and Table 1, the sensitivity with respect to location of mass, sup-
port, and discrete spring are given by the following formulas,
respectively:

oA, )

— = ~2m, (296 24, (18)
z

A, )

= 24, (30) F, (19)
oz

dk, )

5 2k, (42) 6, (42) (20

The required éigensolution in the preceding equations are com-
puted by finite element method using a 10-element model and
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the modes are normalized to unit model mass. The results are sum-
marized in Table 3 along with those computed by overall finite dif-
ference with Az = 0.001. The results agree with one another very
well.

Concluding Remarks

Exact formulas for computing eigenvalue sensitivity with
respect to location of in-span occurrence have been derived in this
Note based on normal mode method. The results showed that for
in-span occurrence with a single interface force, the eigenvalue
sensitivity depends on the slope of eigenfunction as well as a force
term which depends on the specific occurrence.

These formulas depend only on the eigensolutions and can be
evaluated at almost no additional cost. For a specific problem, the
eigenvalue sensitivity formula can be used qualitatively to deter-
mine the effect of moving one of the discrete occurrences. The
quantitative data can be used to find locations of in-span occur-
rences to maximize the fundamental eigenvalue of a structure
member.
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